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Abstract

The task of planning trajectories for a mobile robot has received considerable attention in the research literature.
Algorithms exist for handling a variety of robot shapes, configurations, motion constraints, and environmens. Most

of the work assumes the robot has a complete and accurate model of its environment before it begins to move; less
attention has been paid to the problem of unknown or partially-known environments. This situation occurs for an
exploratory robot or one that must move to a goal location without the benefit of a floorplan (indoor) or tewain map
(outdoor). Existing approaches plan an initial global path or route based on known information and then modify the
plan locally as the robot discovers obstacles with its sensors.While this strategy works well in environments with
small, sparse obstacles, it can lead to grossly suboptimal and incomplete results in cluttered spaces. An alternative
approach is to replan the global path from scratch each time a new obstacle is discovered. While this approach is
optimal, it is grossly inefficient and can require a high-performance computer for real-time operation. This paper
introduces a new algorithm, D*, capable of planning paths in unknown, partially known, and changing environments
in an efficient, optimal, and complete manner. D* models the environment as a graph, where each node represents a
robot state (e.g., a location in a room), and each arc represents the cost (e.g., distance to travel) of moving between
two states. Initially, a path is planned from the goal to the robot's location using known information. As the robot
moves, its sensors discover obstacles in its path. These discoveries are handled by modifying the arc costs. D*
propagates informatioa minimally about these arc charges in the graph to con",',te a new optimal path. The process
repeats until the robot reaches the goal or determines that it cannot. After a discussion of prior work, the paper
introduces the algorithm, proves its soundness, optimality, and completeness, illustrates some path planning
applications, compares it to an alternative algorithm, and summarizes the results.
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1.0 Introduction

The research literature has addressed extensively the motion planning problem for one or more robots moving
through a field of obstacles to a goal. Most of this work assumes that the environment is completely known before the
robe* begins its traverse (see Latombe [10] for a good survey). The optimal algorithms in this literature search a state
space (e.g., visibility graph, grid cells) using the distance transform [6] or heuristics [14] to find the lowest cost path
from the robot's start state to the goal state. Cost can be defined to be distance travelled, energy expended, time
exposed to danger, etc.

Unfortunately, the robot may have partial or no information about the environment before it begins its traverse but is
equipped with a sensor that is capable of measuring the environment as it moves. One approach to path planning in
this scenario is to generate a "global" path using the known information and then attempt to "locally" circumvent
obstacles on the main route detected by the sensors [5]. If the main route is completely obstructed, a new global path
is planned. Lumelsky [13] initially assumes the environment to be devoid of obstacles and moves the robot directly
toward the goal. If an obstacle obstructs the path, the robot moves around the, perimeter until the point on the obstacle
nearest the goal is found. The robot then proceeds to move directly toward the goal again. Pirzadeh [16] adopts a
strategy whereby the robot wanders about the environment until it discovers the goal. The robot repeatedly moves to
the adjacent location with lowest cost, and increments the cost of a location each time it visits it to penalize later
traverses of the same space. Korf [9] uses initial map information to estimate the cost to the goal for each state and
efficiently updates it with backtracking costs as the robot moves through the environment.

While these approaches are complete, they are also suboptimal in the sense that they do not generate the lowest cost
path given the sensor information as it is acquired and assuming all known, a priori information is correct. It is
possible to generate optimal behavior by computing an optimal path from the known map information, moving the
robot along the path until either it reaches the goal or its sensors detect a discrepancy between the map and the
environment, updating the map, and then replanning a new optimal path from the robot's current location to the goal.
Although this brute-force, replanning approach is optimal, it can be grossly inefficient, particularly in expansive
environments where the goal is far away and little map information exists. Zelinsky [22] increases efficiency by using
a quad-tree [19] to represent free and obstacle space, thus reducing the number of states to search in the planning
space. For natural terrain, however, the map can encode robot traversability at each location ranging over a
continuum, thus rendering quad-trees inappropriate or suboptimal.

This paper presents a new algorithm for generating optimal paths for a robot operating with a sensor and a map of the
environment. The map can be complete, empty, or contain partial information about the environment. For regions of
the environment that are unknown, the map may contain approximate information, stochastic models for occupancy,
or even a heuristic estimates. The algorithm is functionally equivalent to the brute-force, optimal replanner, but it is
far more efficient.

The algorithm is formulated in terms of an optimal find-path problem within a directed graph, where the arcs are
labelled with cost values that can range over a continuum. The robot's sensor is able to measure arc costs in the
vicinity of the robot, and the known and estimated arc values comprise the map. Thus, the algorithm can be used for
any planning representation, including visibility graphs [11] and grid cell structures.

The paper continues with a description of the algorithm, followed by proofs of its soundness, optimality, and
completeness. A number of path planning applications are illustrated. First, optimal paths are generated for a point-
sized robot with no map information. More involved problems are then addressed, including planning with robot
shape, dead-reckoning error, dynamic environments, occupancy maps, potential fields, natural terrain environments,
multiple goals, and multiple robots. The paper concludes with an empirical comparison of the algorithm to the
optimal replanner, and the results are summarized.
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2.0 The D* Algorithm

The name of the algorithm, D*, was chosen because it resembles A* 1141, except that it is dynamic in the sense that
cost parameters can change during the problem-solving process. Provided that robot motion is properly coupled to the
algorithm, D* generates optimal trajectories. This section begins with the definitions and notation used in the
algorithm, then presents the D* algorithm, and closes with an illustration of its operation.

2.1 Definitions

The objective of a path planner is to move the robot from some location in the world to a goal location, such that it
avoids all obstacles and minimizes a positive cost metric (e.g., length of the traverse). The problem space can be
formulated as a set of states denoting robot locations connected by directional arcs, each of which has an associated
cost. The robot starts at a particular state and moves across arcs (incurring the cost of traversal) to other states until it
reaches the goal state, denoted by G. Every state X except G has a backpointer to a next state Y denoted by
b(X) = Y. D* uses backpointers to represent paths to the goal. The cost of traversing an arc from state Y to state X is
a positive number given by the arc cost function c(X, 1). If Y does not have an arc to X, c(X, Y) is undefined. The arc
cost function can be either directional (i.e., c(X, 1)* c(Y, X)) or bidirectional (i.e., c(X, Y) = c(Y, X)). Two states X and
Y are neighbors in the space if c(X, 1) or c(Y, X) is defined.

Similar to A*, D* maintains an OPEN list of states. The OPEN list is used to propagate iniformation about changes to
the arc cost function and to calculate path costs to states in the space. Every state X has an associated tag t(X), such
that 0(X) = NEW if X has never been on the OPEN list, I(X) = OPEN if X is currently on the OPEN list, and
0(A) = CLOSED if X is no longer on the OPEN list. For each state X, D* maintains an estimate of the sum of the arc
costs from X to G given by the path cost function h(G, X). For the goal state, h(G, G) = 0. Under the proper
conditions, this estimate is equivalent to the optimal (minimal) cost from state X to G, given by the function o(G, X).
For each state X on the OPEN list (i.e., t(X) = OPEN), the previous cost function, p(G, X), is defined to be equal to
h(G, X) before insertion on the OPEN list. Thus, the previous cost function classifies a state X on the OPEN list into
one of two types: a RAISE state if p(G, X) < h(G, A), and a LOWER state if p(G, X) 2 h(G, X). D* uses RAISE states on
the OPEN list to propagate information about path cost increases (e.g., due to an increased arc cost) and LOWER
states to propagate information about path cost reductions (e.g., due to a reduced arc cost or new path to the goal).
The propagation takes place through the repeated removal of states from the OPEN list. Each time a state is removed
from the list, it is expanded to pass cost changes to its neighbors. These neighbors are in turn placed on the OPEN list
to continue the process.

States on the OPEN list are sorted by their key function value, k(G, X), defined to be min(h(G, X), p(G, X)) if
t(X) = OPEN and undefined if t(X) * OPEN. The parameter kmin is defined to be min(k(X)) for all X such that
t(X) = OPEN. The parameter kmin represents an important threshold in D*: path costs less than or equal to kmin are
optimal, and those greater than k,,,1 may not be optimal. The parameter kold is defined to be equal to kmin prior to
most recent removal of a state from the OPEN list. If no states have been removed, kold is undefined.

An ordering of states denoted by {XIXN} is defined to be a sequence if b(Xi+ 1) = X, for all i such that 1 : i <N and
X# e X. for all (iJ) such that 1 : i <j < N. Thus, a sequence defines a path of backpointers from XNto X1. A sequence
{Xl,XNI is defined to be monotonic if (t(Xi) = CLOSED and h(GXi)<h(GXj+1)) or (1(Xi) = OPEN and
p(G,X1 )<h(G,Xi÷1 )) for all i such that • i <N. D* constructs and maintains a monotonic sequence (G.X},
representing decreasing current or previous path costs, for each state X that is or was on the OPEN list. Given a
sequence of states XlXNv, state X, is an ancestor of state X, if I < i <j < N and a descendant of X, if 1:5,j < i r N.

For all two-state functions involving the goal state, the following shorthand notation is used: flX) --tG, X). Likewise,
for sequences the notation {X} a (GX) is used. The notation fl0 ) is used to refer to a function independent of its
domain.
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2.2 Algorithm Desription

The D* algorithm is presented in this section. The algorithm consists primarily of two functions: PROCESS- STATE

and MODIFY- COST. PROCESS- STATE is used to compute optimal path costs to the goal, and MODIFY- COST
is used to change the arc cost function c(O) and enter affected states on the OPEN list. Initially, (0) is set to NEW for
all states, h(G) is set to zero, and G is placed on the OPEN list. The first routine, PROCESS - STATE, is repeatedly
called until the robot's state, X, is removed from the OPEN list (i.e., 1(X) = CLOSED) or a value of-I is returned, at
which point either the sequence {X) has been constructed or does not exist respectively. The robot then proceeds to
follow the backpointers m the sequence fX} until it either reaches the goal or discovers an error in the arc cost
function c(o) (e.g., due to a detected obstacle). The second routine, MODIFY- COST, is immediately called to correct
c(-) and place affected states on the OPEN list. Let Y be the robot's state at which it discovers an error in c(°). By
calling PROCESS-STATE until it returns kti2th(l), the cost changes are propagated to state Y such that
h(Y) = o(Y). At this point, a possibly new sequence { Y} has been constructed, and the robot continues to follow the
backpointers in the sequence toward the goal.

The algorithms for PROCESS-STATE and MODIFY- COST are presented below. The embedded routines are
MIN- STATE, which returns the state on the OPEN list with minimum k(°) value (NULL if the list is empty);
GET- KMIN, which returns kj, for the OPEN list (-1 if the list is empty); DELETE(X), which deletes state X from
the OPEN list and sets i(X) = CLOSED; and INSERT(X), which sets t(X) = OPEN, computes k(X) from h(X) and
p(X), and places or re-positions state X on the OPEN list sorted by k(°).

In function PROCESS - STATE at lines LI through 1A, the state X with the lowest k(°) value is removed from the
OPEN list. Before X increases or reduces the path cost of its neighbors, it first checks if any of its neighbors can
reduce its own path cost at lines L5 through LIl. Note that the check is limited to CLOSED neighbors with optimal
h(°) values (i.e., less than or equal to the old kmin). At lines L12 through L57 each neighbor of X is examined again.
All neighbors that receive a new path cost are placed on the OPEN so that they will propagate the cost change to their
neighbors. At lines L15 through L20, the path cost is computed from a NEW neighbor Y to the gool. The backpointer
is set to X so that the monotonic sequence { Y} is constructed. At lines L23 through L32, all neighbor states Y that
have a backpointer to X receive a new path cost, regardless of whether the new cost is greater than or less than the
old. Since these states are descendants of X, any change to the path cost of X affects their path costs as well. At lines
L36 through L46, state X reduces the path cost of its neighbors (if possible) that are not immediate descendants of X
and redirects their backpointers to point to X. Note that this reduction is permitted only if X is a LOWER state. It is
shown in the next section that this requirementt is essential to avoid creating a closed loop in the backpointers. If X is
a RAISE state, it is placed back on the OPEN list for future expansion. At lines IA9 through L53, the neighbors Y of
X that are able to reduce the path cost of X are placed on the OPEN list. Since these neighbor states have path costs
greater than the old k,.n, their path costs are not guaranteed to be optimal. Thus, the updating is "postponed" until the
neighbors are selected for expansion, at which time they will be optimal. Finally, at line L59 the current kmin is
returned.

Function: cost:PROCESS-STATE 0

LI X = MIN-STATE( )
L2 if X = NULL then return -1

L3 kold = GET-KMIN()

L4 DELETE(X)

L5 # Reduce h(X) by lowest-cost neighbor if possible

L6 for each neighbor Y of X:

L7 if t(l) = CLOSED and ho() ! ko1d and h(X) > h(Y) + c(Y, X) then

L8 b(X) = Y

L9 h(X) = h(Y) + c(Y, X)

LIO endif

L11 endforeach
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L12 # Process each neighbor of X

L13 for each neighbor Y of X:

L14 # Prpagate cost to NEW state

L15 if I(Y) = NEW then

L16 b(1 = X

L17 h(Y) = h(X) + c(X, Y)

L18 p(l) = h(Y)

L19 INSER719)

L20 endif

L21 else

L22 # Propagate cost change along backpointer

L23 if b(Y) = X and h(9 * h(X) + c(X, 1) then

1,24 if t(1 = OPEN then

L25 if h(Y) <p(O) then p(l) = h(f)
L26 h(l) = h(X) + c(X, Y)

L27 endif

L28 else

L29 h(Y) = h(X) + &,, 1')

L30 p(Y) = h(Y)

L31 endelse

L32 INSERT(/)

L33 endif

L34 else

L35 # Reduce cost of neighbor if possible

L36 if b(Y) *X and h(Y) > h(X) + c(X, Y) then

L37 if p(X) > h(X) then

L38 b(I) = X

L39 h(Y) = h() + c(X, I')
L40 if t() = CLOSED then p(Y) = h()

L41 INSERT(Y)

IA2 endif

IA3 else

L44 p(X)=h(X)

L45 INSERT(X)

L46 endelse

IA7 else

IA8 # Set up cost reduction by neighbor if possible

L49 if b(1)*X and h(X) > h() + c(Y,X) and

L50 t(Y) = CLOSED and h(19 > ko1 d then

L51 p(Y) = h(Y)

L52 INSERT(1Y)

L53 endif

L54 endelse
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155 endelse

L56 endelse

L57 endforeach

L58 # Return k..
L59 return GET- KMIN()

L60 endfunction

In function MODIFY- COST at line L2, the arc cost function is updated with the changed value. Since the path cost
for state Y will change, X is placed on the OPEN list. When X is expanded via PROCESS - STATE, it computes a
new h(,) = h(X) + c(X, k) and places Y on the OPEN list. Additional state expansions propagate the cost to the
descendants of Y.

Function: cost.MODIFY-COST (state: X, state: Y, cost: cval)

LI # Change the arc cost value

12 c(X, Y) = cval

L3 # Insert state X on the OPEN list if it is CLOSED

LA if t(X) = CLOSED then

L5 p(X) = h(X)

L6 INSERT(X)

L7 endif

L8 # Return kmi,

L9 return GET- KMIN()

L1O endfunction

2.3 Illustration of Operation

The role of RAISE and LOWER states is central to the operation of the algorithm. The RAISE states (i.e., h(X) >p(X))
propagate cost increases, and the LOWER states (i.e., h(X) <p(X)) propagate cost reductions. When the cost of
traversing an arc is increased, an affected neighbor state is placed on the OPEN list, and the cost increase is
propagated via RAISE states through all state sequences containing the arc. As the RAISE states come in contact with
neighboring states of lower cost, these LOWER states are placed on the OPEN list, and they subsequently decrease
the cost of previously raised states where ever possible. If the cost ot traversing an arc is decrcascd, the cost decrease
is propagated via LOWER states through all state sequences containing the arc, as well as neighboring states whose
cost can also be lowered.

Fig-,e I through Figure 7 illustrate the operation of the algorithm for a "potential well" path planning problem. The
planning space consists of a 50 x 50 grid of cells. Each cell represents a state and is connected to its eight neighbors
via bidirectional arcs. The arc cost values are small for the free cells and prohibitively large [or the obstacl cclis. The
robot is point-sized and is equipped with a contact sensor. Figure 1 shows the results of an optimal path calculation
from the goal to all states in the planning space. The two grey obstacles are stored in the map, but the black obstacle
is not. The arrows depict the backpointer function; thus, an optimal path to the goal for any state can be obtained by
tracing the arrows from the state to the goal. Note that the arrows deflect around the grey, known obstacles but pass
through the black, unknown obstacle.

In Figure 2, the robot follows the backpointers from its starting location at the center of the left wall toward the goal
Its path is depicted by the horizontal black line. When it reaches the unknown black obstacle, it detects a discrepancy
between the map and the world, updates the map, and enters the state on the OPEN list via MODIFY- COST. The
cell is changed to grey, indicating that it is now known to be an obstacle. PROCESS - STATE is called to compute a
new path to the robot. The state containing the detected part of the obstacle becomes a RAISE state that passes the
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path cost increase to its descendants upon expansion. The RAISE states place the upper neighbor of the detected
obstace on the OPEN list as a LOWER state. This neighbor redirects the robot cell's backpointer up and to the right.
When the robot attempts to move in this direction, ihs sensor discovers that this new cell is also an obstacle.
Successive calls to MODIFY- COST and PROCESS - STATE lead the robot up along the unknown obstacle (see
Figure 3).The dark grey cells in the center of the well are RAISE states, and the light grey cells are LOWER states.
Note that the LOWER states have directed the backpointers in the upper half of the well to point toward the upper
portion of the unknown obstacle.

When the robot reaches the top of the unknown obstacle, it discovers that the "gap" is sealed (Figure 4). RAISE states
propagate this information through the upper half of the well, and then LOWER states expand from the remaining,
lower portion of the unknown obstacle to redirect backpointers toward the lower half of the well. The robot then
moves down along the obstacle to the lower portion of the well and discovers that the entire gap between the two
original map obstacles is sealed (Figure 5). Thus, the path cost to all cells in the well is increased, and this
information is propagated via RAISE states which expand out of the well to the left.

As the RAISE states move out of the well, they activate LOWER states around the lip which proceed to sweep into the
well around the upper and lower obstacles (Figure 6) and redirect the backpointers out of the well. This process is
complete when the LOWER states reach the robot's cell, at which point the robot moves around the lower obstacle to
the goal (Figure 7). Note that after the traverse, the hackpointers are only partially updated. Backpointers within the
well point outward, but those in the left half of the planning space still point into the well. All states have a path to the
goal, but optimal paths are computed to a limited number of states. This effect illustrates the efficiency of D*. The
backpointer updates needed to guarantee an optimal path for the robot are limited to the vicinity of the obstacle.

Figure 1: Backpointers Based on Initial Propagation from Goal State
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Figur 2: Robot Discovers First Unknown Obstacle Cail
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Figure 4: Robot Moves Down in Search ot Path around Obstacl.
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1gm. 6: LOWER States Sweep into Well
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3.0 Proofs of Soundness, Optimallty, and Completeness

After all stales X have been initialized to t(X) = NEW and G has been entered onto the OPEN list, the function
PROCESS - STATE is repeatedly invoked to construct state sequences. The function MODIFY - COST is invoked to
make changes to c() and to seed these changes on the OPEN list. In this section, D* is shown to have the following
properties:

Property 1: If t(X) * NEW, then a sequence {X} is constructed and is monotonic.

Property 2: When the value k.i, returned b,, ,ROCESS-STATE equals or exceeds h(X), then
h(X) = o(X).

Property 3: If a path from X to G exists, and the search space contains a finite number of states,
then {X} will be constructed after a finite number of calls to PROCESS - STATE. If a path does
not exist, then PROCESS -STATE will return -1 with t(X) = NEW.

Property I is a soundness property: once a state has been visited, a finite sequence of backpointers to the goal has
been constructed. Property 2 is an optimality property. It defines the conditions under which the chain of backpointers
to the goal is optimal. Property 3 is a completeness property: if a path from X to G exists, it will be constructed. If no
path exists, it will be reported in a finite amount of time. All three properties hold regardless of the pattern of
invocation for functions MODIFY- COST and PROCESS - STATE.

In order to prove that D* has the above properties, a number of theorems are needed to lay the groundwork. As D*
propagates costs, it redirects backpointers in such a way as to create new and optimal state sequences. The first gi jup
of theorems defines the conditions under which backpointers can be modified and still preserve Property 1. Theorem
1 establishes the uniqueness of a state sequence.

Theorem 1: If each state has only one backpointer, only one sequence IXIX.) can exist between
any two states X, and X,,.

Proof: Let {fYYM) be another sequence from X, to X,. Clearly, Y1' must be X. since the
sequences must end at the same state. Y.- , must be XN._ 1 unless Y. or XN has two backpointers.
By induction, the sequences must be identical down to and including state X,. If {Xl.XN and
({YI,Yu are of different lengths, then either the longer sequence does not end at X, or it contains
multiple copies of X,, thus violating the definition of a sequence. QED.

Theorem 2 defines the condition under which a state can be cut off from the goal. If the backpointer of an ancestor of
state X is redirected to point to X or one of its descendants, then a cycle in the backpointers is introduced in
sequences that contain X.

Theorem 2: Assume that Property 1 holds for a given set of states. Given the sequence {G.X}, let y
be the set of states, such that Ye y if the sequence {XMY} exists. If b(X) is set to some state Y, in y,
then no sequence (G,YI exists fora state Y iff Y e y.

Proof: If Y, e y, then any sequence (G,Y,) must contain the subsequence {G}X) (by the definition
of y and Theorem 1). But if b(X) is redirected to point to a member of y, then {G.XI must contu.
X again. This violates the definition of a sequence. Therefore, all states Y E y will not have valid
sequences. Since only b(X) is redirected, any states which are not members of y are unaffected, and
Property I still holds for these states. QED.

One way to avoid a cycle when redirecting the backpointer of state Y to point to X is to determine whether or not Y is
an ancestor of X. Theorem 3 establishes a necessary condition for this determination by capitalizing on the
monotonicity of state sequences under Property 1.
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Theorem 3: Assume that Property 1 holds for a given set of states. Given a monotonic sequence
IX1.}X) and a state Z with h(Z) > h(XN), Z cannot be a member of tXXNI unless iX]XN1 contains
at least one RAISE state.

Proof: Assume Z is a member and {X.XN) contains no RAISE states. For any pair of adjacent
states Xi and X, I in the sequence, if t(Xi) = CLOSED, then h(X1 ) < h(Xi+l ) by definition. If
i(X). = OPEN, then p(X) < h(Xi+ 1). But since Xi must be a LOWER state, then h(X) <p(X), and
therefore h(X1) < h(Xi+ 1). Therefore, by induction and transitivity of the inequality relation,
h(X) < h(XN) for all i such that 1 s i < N. So by contradiction, either Z is not a member or the
sequence contains a RAISE state. QED.

The following theorem strengthens the condition on the RAISE state for determining state ancestry by establishing a
relational test on its k(°) value.

Theorem 4: Assume the sequence {XXN) is monotonic. If any of the elements X, through XN._ I

are RAISE states, then for at least one of these RAISE states XS, k(Xs) < h(XN).

Proof: Assume that {XIX_ 1) contains at least one RAISE state, and let Xs be the RAISE state
with the largest index. Therefore, the subsequence {Xs Xl¢} contains no RAISE states. By the
definition of a monotonic sequence, h(X) <h(Xi+ 1) for all i such that S< i <N. Therefore, by
induction and transitivity of the inequality relation, h(X, + 1) 5 h(XN). (Equality of the h(a) values
occurs when S+I = N.) Since X. is a RAISE state, then k(Xs) = p(Xs)<h(Xs+ ); thus,
k(Xs) < h(XN). QED.

Therefore, by redirecting backpointers only to states with h(O) less than or equal to the minimum k(o) on the OPEN
list, it is impossible to create a bacikpointer cycle. This is formalized in Theorem 5.

Theorem 5: Assume that Property I holds for a given set of states. Let X be a state such that
h(X) < km•,. Let Xi be a neighbor state of X such that c(X, X) is defined and h(X) < h(Xi). If b(Xi) is
set to X, then Property 1 is preserved.

Proof: Consider the two cases: 1) Xi is not a member of the sequence (GXI; and 2) Xi is a member.
Case 1: Since X is not a descendant of X,, then sequences exist for all states with t(0) * NEW after
the backpointer is redirected (Theorem 2). Since the sequence { GX) is monotonic, h(X) < h(Xi), and
all sequences beginning with Xi are monotonic (Property 1), then all resultant sequences are
monotonic. Case 2: Since h(X) is less than or equal to the minimum k(O) value on the OPEN list,
then from Theorem 4, no members of the sequence {G.X} can be RAISE states. But from Theorem
3, if no members are RAISE states, then Xi cannot be a member of IGX} unless h(X) > h(X1). But,
h(X) < h(X), so case 2 cannot exist. QED.

In addition to theorems governing the modification of b(°), a theorem governing modifications to h(°) is needed to
preserve monotonicity of the sequences as required under Property 1.

Theorem 6: Assume that Property 1 holds for a given set of states. Consider two states, X and Y,

such that b(Y) = X. The following modifications can be made to hO') while still preserving
Property 1. If t(l') = OPEN, then h(Y) can be modified to assume any value provided that
h(Y) > p(X) if t(X) = OPEN and h(l) > h(X) if t(X) = CLOSED. If 1(1) = CLOSED, then h(Y) can
be adjusted if it satisfies the same lower bound constraints and is also not increased.

Proof: Let y be the set of states such that Yi E y iff b(Y1) = Y. Consider the case where
t(Q) = OPEN. From the definition of a monotonic sequence, p(l) must be less than h(Y,) for all Yi
in y. Modifying h(l) does not affect p(Y), so the condition still holds. From the definition of a
monotonic sequence, the value of h(l') must be greater than p(X) if X is OPEN and greater than
h(X) if X is CLOSED, but these conditions are stated in the theorem. Consider the case where
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t() = CLOSED. From the definition of a monotonic sequence, h() < h(Y) for all Y1 in y.
Decreasing h(Y) preserves this condition, provided h(l) satisfies the lower bound constraints stated
above for the same reasons. Thus, all sequences remain monotonic and Property I holds. QED.

"A corollary can be derived for modifications to p(°).

Corollary 6: Assume that Property I holds for a set of states. Given a state X such that
t(X) = OPEN, if p(X) is reduced then is Property I preserved.

Proof: See the proof to Theorem 6. Since p(X) has an upper bound but no lower bound, it can be
reduced and Property I still holds. QED.

"A similar theorem governing modifications to t(°) is needed to preserve sequence monotonicity under Property 1.

Theorem 7: Assume that Property 1 holds for a given set of states. If t(X) is changed from OPEN
to CLOSED, Property 1 is preserved if h(X) <p(X). If t(X) is changed from CLOSED to OPEN,
Property I is preserved if p(X) < h(X).

Proof: Consider the case where t(X) is set to CLOSED. Let x be the set of states such that Xi e x iff
b(X1) = X. Before closure, p(X) must be less than W(X,) for all Xi in x, and after closure, h(X) must
be less than h(X1) for all Xi (definition of a monotonic sequence). Thus, if h(X) <p(X), then
h(X) <p(X) <h(X,) for all Xi in x and the theorem holds. Consider the case where (X) is set to
OPEN. If p(X) < h(X), then p(X) . h(X) < h(X) for all X, in x and the theorem holds. QED.

The supporting theorems are now in place to prove that D* preserves Property I in all cases.

Theorem 8: D* preserves Property 1.

Proof: The portions of PROCESS - STATE and MODIFY- COST that modify the functions b(°),
h(°), p(°), and t(*) need to be examined. In PROCESS -STATE at line IA, X is removed from the
OPEN list. It is shown below that Property 1 is preserved by modifying the h(9) values of states
with backpointers to X. At line L8, b(X) is redirected. Since h(I < k 0 k,,i,, and h(l) < h(X), then
by Theorem 5 Property 1 is preserved. At line L9, h(X) is modified. From the conditional, h(X) is
modified only if it can be decreased, and after modification, h(X) > h(l). Since both X and Y are
CLOSED, from Theorem 6 Property I is preserved. At line L16, b() is assigned. Since 91) is
NEW, it was not previously part of a sequence, and after the assignment of b(Y), Y is the last state
in the sequence. At line L17, h(l) is assigned such that h(Q) > h(X), thus preserving Property 1. At
lines L18 and L19, Y is inserted onto the OPEN list. Since no other states have backpointers to Y,
then p(o) can assume any value, and Property 1 is preserved. At lines L26 and L29, h(Y) is
modified so that it is greater than h(X) for all Y such that b(V) = X, thus restoring monotonicity
possibly lost from the removal of X from the OPEN list at line LA. At line L25, p(I) is reduced.
From Corollary 6, Property 1 is preserved. At line L32, Y is inserted or repositioned on the OPEN
list. If t(1) is changed to OPEN, then since p(1) = h(Q), from Theorem 7 Property 1 holds. At line
L38, b(Y) is redirected. Since h(X) = koId kmin and h(X) <h(Y), then by Theorem 5 Property I is
preserved. At line L39, since h(19 is reduced, h(l) > h(X), and X is either CLOSED or OPEN with
p(X) = h(X) (lines L44 and IAS), then from Theorem 6 Property I is preserved. At line LA1, Y is
inserted or repositioned on the OPEN list. For the same reason as line L32, Property 1 holds. At
lines L44 and LA5, X is placed back on the OPEN list. Since p(X) = h(X), then from Theorem 7
Property I is preserved. For the same reason, Property I is preserved when Y is placed back on the
OPEN list at lines L51 and L52.

The function MODIFY- COST affects t(°) but does not modify b(°), h(°), or p(°). Note: p(0 ) is
assigned but not changed. At line L6, the CLOSED state X is placed on the OPEN list. Since p(X)
is set to h(X), then from Theorem 7 Property 1 is preserved. QED.
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Thus, Theorem 8 proves that D* will not "cut off" a state X from the goal once the sequence IG.X) has been
constructed. The sequence may be modified later, but at all times it is possible to trace backpointers from X to G.
Thus, D* generates only sound sequences. This property is important for moving the robot toward the goal before
information has been fully propagated through the set of states.

The optimality of D* is shown next, as stated in Property 2. The first theorem addresses the relationship between
states on and off the OPEN list Figure 8 illustrates the possible combinations and transitions for the g(o) values of a
pair of neighbor states X and Y.

Figure 8: Possible transitions for states X and Y

II

t(Y) = NEW
S3 S4
SI I OPEN 7CO

S5 = tO Y) = NEW

S5

tff) t(Y =OE OPEN N

t(Y) =CLOSED

After the stak." X and Y are initialized, they are both labelled NEW, as shown in box S 1. Since a state tag cannot be
set to NEW again after initialization, box S I cannot be re-entered (as shown by the arrows). The dangling arrow
points to isomorphic copies (not shown) of boxes 52 through S6 with X and Y swapped. Box S2 represents the
placement of X on ihe OPEN list, after which Y can be opened (S3) or X can be closed (S4). The two states can
transition between S3, S5, and S6 as the states are individually inserted and deleted from the OPEN list. Again, the
dangling pointers from S3 and S6 point to a box isomorphic to S5.

Using this state transition diagram, a theorem about the relationship between cost values for states in box S5 is proved
below.

Theorem 9: Given any two states, X and Y, such that c(X, Y) is defined, t(X) = CLOSED, and
t(Y) = OPEN, then k(Y)• h(X) + C(X, 13.

Proof: Initially, X and Y are NEW states as shown in box S 1. Since X and Y can be opened by
different states, no assumptions are made about their h(0) and k(*) values in the transition through
box S2 to S3. In the transition from S2 through S4 to S5, X is CLOSED and Y is placed on the
OPEN list. This transition occurs at lines LI5 througý. L19 in PROCESS- STATE. In this segment,
k(F) = h(Y) is set to h(X) + c(X, V), thus the theorem holds. In the transition from S3 to S5, X is



CLOSED and Y remains OPEN. Consider the two cases: 1) b(1) = X; and 2) b(1 X. Case 1: At
lines L23 through L32, hQ) is set to h(X) + c( Y) and k(Y < ); •'.us, the teorem holds. Case 2:
Consider two subcases: 2a) X was a LOWER state; and 2b) X was a RAISE state. Case 2a. At fines
L37 through L41, if/s(Y f h +(X)+ , 1, then since Q) l h(1) and no action is taken the theorem
holds. If >h(X) + c(X, 1), then h() is set equal to h(X) + c(X k). Since k(19 ; h(n), the theorem
holds. Case 2b: If (1) > ) + c(X, 1), then X is placed back on the OPEN list at lines L44 and
IA5, and X and Y we transitioned back to box S3. In box S5, it is possible for a state other than X
to modify h(t). Since reducing h(Y) can only reduce k(19, only those modifications that increase
s(1) are of concern (lines L25 and L26). In this segment. p(k) is reassigned in order to prevent k(l)
from increasing, and the theorem holds.

In the transition from S5 to S6, consider three cases: 1) an immediate transition is made within
PROCESS-STATE from S6 back to S5; 2) an immediate transition is made from S6 to the box
isomorphic to S5; and 3) the states remain in S6. Case 1: At lines L44 and L45, Y is placed back on
the OPEN list with k(l) = h(l) after a possible reduction of h(Y) at lines L7 through L9. Since k(l)
can only be reduced, k(1) < h(X) + c(X, 1) and the theorem holds. Case 2: Y is closed and X is
opened. At lines L29 through L32 and L36 through L41, k(X) is set to h(Q) +c(Y,X) and the
theorem holds. At lines L49 through L52, k(X) is set to h(X). Since h(l) > h(X) + c(X, k), then
k(X) = h(X) < h()- c(X, k) <h(l) + c(Y,X) and the theorem holds. Case 3: The only segment of
PROCESS- STATE that leaves both states CLOSED is lines L7 through L9. If h(l) exceeds h(X)
by more than c(X, 1), then h(Y) is set to hUoo+c(X, 1); thus, h(•F: </X) + c(Z, 1). Note also that
h(X)! h(Y) + c(Y, X); otherwise, X or Y will be placed on the OPEN list at lines L23 through L52,
and the states will transition out of S6. In the transition from S6 back to S5, Y is placed back on the
OPEN list, then k(J) = h(Q S h(X) + c(X, 1 and the theorem holds. If the transition is made from S6
to the isomorphic box to S5, then k(X) = h(X)5 <h() + c(Y, X) and the theorem holds.

This last case is important for analyzing the effects of function MODIFY- COST. This function is
able to change a state from CLOSED to OPEN. Since box S4 is only a temporary transition within
PROCESS - STATE, it cannot be affected by MODIFY- COST. MODIFY- COST can effect
transitions from S5 to S3, but the theorem states nothing about these transitions. The only
applicable transitions are 86 to S5 and the box isomorphic to 85. Since h(Y): h(X) + c(X, 1) for
states in S6 (see above), if Y is placed on the OPEN list, then k(l) < h(X) + c(X, 1) and the theorem
holds. This operation occurs at lines L5 and L6 of MODIFY- COST. The same reasoning applies to
the transition from S6 to the isomorphic box to S5. QED.

Theorem 9 is very powerful, because it proves that CLOSED neighbors of an OPEN state cannot reduce the °0)
value of the OPEN state. The followiii .orollary derived from the proof for the previous theorem describes the
relationship between h(') values for a neigiAboring pair of CLOSED states.

Corollary 9: Given two states X and Y such tlht t(X) = t(1) = CLOSED, if c(Y, X) is defined, then
h(X) h() + c(Y,X), and if c(X, 1) is defined, he, , h(X) + c(XQ Y).

Proof: See the proof for Theorem 9. QED.

From Theorem 9, the monotonicity of the parameter km, is proved in the theorem below.

Theorem 10: Between calls to MODIFY- COST, the parameter km,. increase-z or remains at the
same value a finite nmnber of times with each invocation of PROC 'SS - STA2 6.

Proof: Let X be the next state to be remove,., ": - OPEN list; therefore, k(X) = kmin. It will be
shown that X can only insert or reposition states on the OPEN list to have k(°) values greater than
k(X). Since there are a finite number of states on the OPEN list with k(°) values equal to k(X), then
kmsn must increase or remain the same for a finite number of iterations. At lines L7 through L9 in
PROCESS-STATE, h(X) can be reduced. Since Y is CLOSED, the value of h(X) cannot be
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reduced below 0) (Theorem 9). At lines L15 through L19, Y is inserted onto the OPEN list. Since
W) = s(k) - h(X) +c(X, V)> h(l ek(X), the theorem holds. At lines L23 through L32, Y is

inse or repositioned on the OPEN list. Consider the case where Y is already on the OPEN list.
Reassigning the value of h(W) can only reduce k() or leave it unmodified. If k(1) is reduced, then
k(Y) = k() - h(X) + c(X, 1) > h(X) kk(X) and the theorem holds. If the value of k(Y) is unmodified,
then either it was already greater than k(X) or was equal to it, and the theorem holds. Consider the
cae where Y is inserted onto the OPEN list. For the same reasons as lines L15 through L19, the
theom holds.

At lines L37 through L41, Y is inserted, repositioned, or left in the same place on the OPEN list
Since p(X) a h(X), then h(X) = k(X). Since after modification h(1) is greater than h(X), if Y is
inserted onto the OPEN list, then k(Y) = h() > h(X) = k(X) and the theorem holds. If Y is already
on the OPEN list, then either p(1) is less than the modified h(f) and Y is not repositioned, or p(l)
is greater than or equal to h(1), and k() = h(19; thus, the theorem holds for the above reasons. At
lines L44 and L45, X is re-inserted on the OPEN list. Since p(X) < h(X) before re-insertion and
p(l) = h(X) after re-insertion, then k(') must increase and the theorem holds. At lines L49 through
L52, Y is inserted onto the OPEN list. Since k(1) = h) > kold = k(x), the theorem holds. QED.

Now that the monotonicity of k.,s has been established, the inductive step for optimality can be constructed. It is
shown below that if states with h (0) values less than or equal to k,,,, at the i-th invocation of PROCESS - STATE are
optimal, then states with h(0) values less than or equal to the new kmin at the (i+l)-st invocation of
PROCESS - STATE are optimal.

Theorem 11: If h(X) = o(X) for all states X such that ho( <kold, then h(1) = o(l) for all states Ysuch that kotd < h(Y)!< kmi.

Proof: A state Y,, such that koldg h(Y1)< km must be either 1) CLOSED or 2) OPEN with
h(Y) = ro" Order the states Y1 by h (0) value such that kld < h(YI):5 h(Y2) -' - h(YN) < kmin.

Consider 1'Y first. Case 1: From the premise, h(Z) = o(Z) for all neighbor states Z (i.e., c(Z Y1) is
defined) such that h(Z) < h(Y,). From Corollary 9, none of these optimal neighbor states can reduce
h(Y1). Nor can any neighbor states on the OPEN list reduce h(Y1), since the h (0) values for states
on the OPEN list are greater than or equal to k,,,. These OPEN states cannot reduce each other's
h(l) values below kmin, nor can their CLOSED neighbors (Theorem 9). Thus, since h(Y,) 5 km•,,,
then h(Y1) = o(Y1). Case 2: Since h(Y1) = k(Y,), then from Theorem 9, a neighbor state X with
h(X) = o(X) < h(Y,) cannot reduce h(Y1). Thus, h('j) = o(Y1). The above argument can be repeated
for the remaining states in order, and by induction, h(Yi) = o(Y). for i = 2 through i = N. QED.

The monotonicity of k.,. established in Theorem 10 combined with the inductive step established in Theorem 11 is
used below to prove the optimality of D* as given in Property 2, regardless of the calling sequence of
PROCESS-STATE and MODIFY- COST.

Theorem 12: D* preserves Property 2.

Proof: Initially, the goal state G is placed on the OPEN list with h(G) = o(G) = 0. There are no
CLOSED states since t(6) = NEW for all states except G. When PROCESS- STATE removes and
expands a state from the OPEN list, ko,, is set to kmis and kmin is increased monotonically
(Theorem 10). From Theorem 11, for the states X such that ko1dr h(X)< kmin, h(X) = o(X);
therefore, h(X) = o(X) if h(X)!<kmjn.

Assume that c(X, 1) is modified, and the change is seeded via MODIFY- COST. If X is OPEN,
then the change to c(X, v) cannot affect optimality of states with h(0) less than or equal to kmi,,
since h(X) can be reduced no lower than kmi, (Theorem 9). Since h(X) + c(X, 1) must be greater than
Imi., then h(O) values equal to or lower than kmi cannot be reduced; thus, the premise to Theorem
11 is still true and PROCESS - STATE can be invoked to propagate the modification. If X is
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CLOSED, then MODIFY- COST ensures that ki <g h(X) by placing X on the OPEN list. This
operation preserves the truth of the premise to Theorem 11, since reducing kmi,, selects a subset of
the optimal CLOSED states. Thus, Property 2 is preserved regardless of the pattern of cost
modification and propagation. QED.

The thorem below shows that D* finds a monotonic sequence to any state X that is reachable from the goal.

Theorem 13: D* preserves Property 3.

Proof: Assume that a state X. is reachable from the goal (i.e., 1XIXNI exists, where G = Xj).
Initially, G is placed on the OPEN list. When state Xi is expanded, it places or repositions X, + on
the OPEN list and redirects its backpointer if necessary (lines L15 through L19, L23 through L32,
and L37 through L41 in PROCESS-STATE). By induction, the sequence (XI.Xv) will be
constructed unless some state X. exists in the sequence {XIXN} such that t(Xs) = OPEN, and Xs is
never selected for expansion. Once a state X. has been placed on the OPEN list, its k(O) value
cannot be increased, since all modifications to h(o) for OPEN states are reductions. Lines L24
through 126 are the exception, where p(O) is reassigned to prevent k(') from increasing. Thus, due
to the monotonicity of kmj. (Theorem 10), X. will be eventually removed from the OPEN list.

If a state XN is unreachable from the goal, eventually all reachable states will be placed on the
OPEN list (via lines L15 through L19 in PROCESS - STATE) and will be removed given the above
reasoning. Since the number of search states is finite, the list will empty after a finite number of
calls to PROCESS - STATE, and -1 will be returned with t(xN) = NEW. QED.

The significance of the results in this section is that when PROCESS - STATE visits a state X (i.e., t(X) A NEW), it
constructs a sequence {X} to the goal. Thereafter, a sequence is maintained regardless of subsequent arc cost
modifications and propagation. If PROCESS - STATE returns -1 before X is visited, then no path exists from X to the
goal. If PROCESS- STATE is invoked repeatedly until it., is greater than or equal to h(X), then the optimal
sequence {X) to the goal has been found. The possible uses of D* for mobile robot path planning are discussed in the
next section.
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4.0 Motion Planning Applications

In this section, D* is used to solve a number of problems, beginning with a simple indoor mobile robot path planning
problem and then extending to more difficult and relevant planning problems. All of the examples in this section were
generated using an implementation of D*.

4.1 Simple Path Planning

For all of the path planning problems in this section, the environment model is an 8-connected cartesian lattice or grid
of cells as shown in Figure 9. Note that D* is not limited to this representation; instead, it requires only that the plan-
ning space be agraph of states. A state is definedto be thecenter ofacellin the lattice. For a given state X, c(X1, X) is
defined for i = I to 8. Thus, it is possible to move from state X to neighboring states whose cells share an edge or
comer in the lattice. The arc cost of moving from X to X, is defined to be equal to the cost of moving from Xi to X;
thus, c(X, X,) = c(X1, X). Let function s(X) be the presumed cost of traversing the width of the cell containing state X,
and let function a(X) be the actual cost of traversing the cell. From the figure, c(X, X) = s(X)/2 + s(Xi)/2 if X and X,
share an edge, and c(X1, X) - (s(X) + s(Xi)) (,J2/2) if X and Xi share a comer.

Figure 9: Cell Lattice for Path Planning
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For the simple path planning problem, the following assumptions are made about the robot and its environment:
- Onmidirectionallity: the robot is capable of moving from state Y to any state X for which c(X, 1) is defined.
For the above environment model, the robot can move in any of the eight directions.
"* Point Size: the robot has zero physical extent; thus, its workspace equals its configuration space.
"• Minimal Field of View (FOV): the robot is equipped with a sensor capable of measuring the a(°) value of the
cell in which it resides or that of a neighboring cell.
- Deterministic Motion: the robot accurately follows planned paths so that "safety buffers" around obstacles are
not needed.
"• Static Environment: the a(") values of the cells are static (i.e., they do not change in time).
"* Binary Obstacle Representation: the s(°) and a(0) values for a given cell can take on one of two values:
EMPTY, a small positive value representing the cost of traversing a cell free of obstacles; and OBSTACLE, a large
positive value indicating the cell contains an obstacle and is untraversable. Note: these values must be chosen so
that the path cost for any sequence of states through EMPTY cells is less than OBSTACLE.
- No Initial Map Information: nothing is known about the environment initially, and it is presumed that
s(X) = EMPTY for all states X.

"* Single Goal State: only one state has an h(°) value of zero.
"* Single Robot: only one robot moves through the environment.
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Let s be the state in which the robot begins. To use D*, the goal state is placed on the OPEN list with
k(G) = h(G) = O, and PROCESS- STATE is called repeatedly until h(S) is less than or equal to k,in, At this point an
optimal path has been computed from S to G. (Since all cells are presumed EMPTY, this path is direct.) The robot
proceeds to step toward the goal, following the backpointers in the state sequence, until either it reaches the goal or its
sensor detects that s() * a(X) for a state X. In the latter case, the robot has detected an obstacle, and s(X) is set to
a(X), c(X, ") and c(°, X) are updated for all neighboring states, and the changes are entered onto the OPEN list via
function MODIFY- COST. The routine PROCESS - STATE is repeatedly called until k=i equals or exceeds the h(°)
value of the state containing the robot. At this point, a new optimal path has been computed, and the above process
repeats until the goal is reached or until kj, equals or exceeds OBSTACLE. In the latter case, the optimal path
contains an obstacle; therefore, no obstacle-free paths exist to the goal.

Figure 10 illustrates simple motion planning with an unknown potential well. Unless otherwise stated, all
environments in this section are 200 x 200 cells. Unlike the example in Figure 1 through Figure 7, the robot assumes
the environment is devoid of obstacles when it begins its traverse. Initially, the robot moves straight toward the goal.
When it encounters the obstacle's perimeter, the robot moves down in an attempt to find an opening through the
barrier, edges up slightly along the lower wall as it detects it, and then doubles back up before finally moving along an
interior wall and around the exterior to the goal. The OBSTACLE cells detected by the robot's sensor are shown in
grey, and the unsensed cells are shown in black.

Figure 10 Simple Path Planning with an Unknown Potential Well

4.2 Field of View Considerations

Except for contact sensors, most robot sensors (e.g., sonars, laser rangefinders, video cameras) have a field of view
(FOV) covering an area in the vicinity of the robot. D* can easily accommodate a sensor with a FOV of any size.
When the robot is moved from state X to state Y and new sensor data is taken, s(Z) is compared to a(Z) for all states
Z in the FOV. If s(Z) * a(2) for any state in the FOV, s(Z) is set to a(Z), c(Z, ) and c(°, Z) are revised via
MODIFY- COST, and PROCESS - STATE is repeatedly called until kmin > h(Y). Thus, the only revision to the simple
path planning algorithm is that potentially more than one cell's cost is updated per sensor reading.

Figure 11 shows the same path planning problem as Figure 10, except that the robot is equipped with a circular-FOV
sensor with a radius of 15 cells. For ease of implementation, the FOV was chosen to include all cells in the circle
without occlusion. Since the robot can see the "bottom" of the well before reaching it, it changes course and follows
the exterior perimeter. In general, the larger the robot's FOV, the shorter the path it will traverse, since it can see
obstacles before it "bumps" them and will begin to avoid them sooner.



23

Figure 11: Path Planning with a Circular Field of View
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4.3 Shape ConsidedlIons
Real robots have non-zero size; thus, a path planning algorithm must ultimately be able to model robot shape. D* can
handle robot shape by constructing the configuration space [11] as the robot's sensor discovers obstacles in the envi-
ronment. Define three functions: a.(X, Y), the actual C-space obstacle cost of EMPTY or OBSTACLE at robot config-
uration Y due to an obstacle at location X; ac(Y), the actual C-space total cost for configuration Y equal to
OBSTACLE if any a0(X, Y) = OBSTACLE for applicable X; and sa(Y), the presumed C-space total cost for configura-
tion Y. Whenever the sensor discovers a discrepancy between the map and the environment (i.e., s(X) * a(X)), s(X) is
set to a(X), and a4(Y) is computed using a,(X, Y) for all applicable Y. For each configuration Y for which
s() * at(Y), sc(lY) is set to a4(Q) , MODIFY- COST is called to update c(o) using s$c() rather than s(O), and
PROCESS - STATE is called repeatedly until a new optimal path is found.

Figure 12 illustrates the results for a disc-shaped robot. In this example, the configuration space and the workspace
are both two-dimensional, so the two spaces are shown in the same figure. The black area represents an unknown
obstacle in the workspace (i.e., a(°) values), and the grey represents the known C-space obstacle (i.e., sj(o) values) for
cells exterior to the black square and the known workspace obstacle (i.e., s(O) values) for cells interior to the square.
The field of view of the robot is 20 cells, and the radius of its disc shape is 10 cells. Note that the configuration space
is generated as the robot disoý-ýrs the unknown obstacle, and it moves around the obstacle at a stand-off distance
equal to its radius. Of course, the field of view of the robot must be at least as great as the robot's radius or collisions
cannot be avoided. This approach can be extended to higher-dimensional configuration spaces (e.g., three
dimensional for translation and rotation of a polygonal robot) by increasing the dimensionality of the planning space.
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Figure 12: Path Planning with a Disc-Shaped Robot
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4.4 Dynamic Environments and Dead-ReckonIng Error

In many cases, it is inapprpriate to assume the robot's world is static [2][3][4][7]. Obstacles may move around
within the environment, new obstacles may enter, and old on1s may leave. These changes may occur while the robot
is emnute to the goal. D* is capable of handling dynamic environmens. Changes in the environment are detected by
the robot's sensor. These sensor readings modify the function a('). Whenever a discrepancy is seen between the
actual world and the presumed world (Le., a(*) * s(O) for at least one state), the changes are entered on the OPEN Jist
and the robot's trajectory is modified if needed to preserve optinality. Tesw changes can be of two types: 1) an
EMPTY cell becomnes an OBSTACLE; and 2) an OBSTACLE ceH becomes EMPTY.

Figure 13 shows an environuent in which the obstacle has moved without the robot's knowledge. The grey rectangle
shows the original, presumed position, and the black rectangle shows the current, unknown position. Figure 14 shows
the trajectory of the robot through the environment. Believing the obstacle to be in the grey position, the robot
initially deflects toward the bottom. When it reaches the center of the environment, it encounters the obstacle in its
current location. It moves along the obstacle toward the lower boundary of the environment, entering the new
location of the obstacle into the map and "coloring" it grey. After discovering the lower route is obstructed, it doubles
back to the top whereupon it discovers there is no obstacle in the original location. The obstacle is deleted from the
map as the robot moves around the top of the obstruction and to the goal. Note that part of the original obstacle
remains in the map, since this portion was unseen by the robot's sensor.

In the presence of inaccurate map data, it is possible for the robot to mistakenly believe that no path exists to the goal.
This condition is detected by the function PROCESS - STATE returning a value equal to or greater than OBSTACLE,
thus indicating that the shortest path to the goal passes through at least one OBSTACLE state. This condition should
not be confused with a returned value of '-1', indicating that no sequence of arcs of even OBSTACLE cost exists to
the goal. In the event that a value of OBSTACLE or greater is returned, one strategy is to set s(°) to EMPTY for all
states in the map, enter the goal state on the OPEN list, invoke PROCESS-STATE repeatedly until k,,i, is greater
than or equal to h(X), where X is the current state of the robot, and then move the robot. This action has the effect of
discounting all map information and forcing the robot to verify that the obstructions still exist or discover that they do
not.
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Figure 13: Before and After Positions of a Dynamic Obstacle

Figure 14: Discovering that the Obstacle has Moved

S!

D* can also handle uncertainty in the robot's motion (e.g., dead-reckoning error). If the robot is located at state X but
its position estimation system reports that it is at Y, its sensor will perceive (incorrectly) discrepancies between the
map and the real world (e.g., shift in an obstacle's location). The discrepancies will be entered onto the OPEN list via
MODIFY- COST and propagated via PROCESS-STATE to compute a new trajectory. This new trajectory will
correctly avoid the obstacles in the current FOV at their "new" locations. Provided the motion error is small
compared to the size of the free-space corridors in the environment, the robot will plan a correct local trajectory (i.e.,
for obstacle avoidance) without adversely affecting its global trajectory (i.e., route to the goal).

4.5 Occupancy Maps and Potential Fields

In some applications, a binary obstacle representation is inadequate. Due to sensor uncertainty, the robot cannot
always determine whether a cell is occupied or empty but can assign a probability of occupancy[lI] [20]. Other appli-
cations may call for a safety buffer around the obstacles to minimize the probability of collision. This technique can
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be used to account for robot motion error. A potential field [8] can be constructed by assigning high cost values to
cells cotmining an obstacle or near an obstacle and lower cost values that decrease to zero to cells farther away.

D* is caable of handling continuous values for a(0), W°), and consequently c(°). Define three functions: a,(Y), the
actual total potential at state Y; st(I), the presumed total potential at state Y; and a (X, 19, the actual obstacle
potential at state Y due to an obstacle at state X. In the example below, for each state X for which s(X) * a(X), s(X) is
set to a(X), aA(Y) is computed for each affected Y by summing ap(X, Y) over all applicable X. For each state Y for
which stY) * at1), st(1) is set to ao(19, MODIFY- COST is called to update c(1) using st(°) rather than s(O), and
PROCESS - STATE is called repeatedly until a new optimal path is found.

Figure 15 illustrates path p!anning with potential fields. The robot has no knowledge of the obstacles before it begins
its traverse; thus, it can construct the potential field only when an obstacle appears in its field of view. The sensor's
field of view is 10 cells, and the potential field decreases proportionally to min(MAXCOST, l/r 2 ), where MAXCOST
is a maximum cost value and r is the distance from the obstacle. The two L-shaped unknown obstacles (black) are
changed to light grey as the robot's sensor detects them. The grey "blur" along the obstacle edges is the potential field
created from the detected portion of the obstacles. Initially, the robot presumes the environment is EMPTY and heads
directly toward the goal. It is repelled by the potential field in the narrow channel and moves along the boundary of
the upper obstacle. Once it has moved sufficiently far from the goal, it doubles back along the boundary of the lower
obstacle until the estimated cost of the longer path around the obstacle exceeds that of the more direct route through
the potential field. Thus, the planner chooses a shorter path through a riskier area (i.e., close to obstacles) rather than
a longer, safer one and heads for the goal.

Figure 15: Path Planning with Potential Fields
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4.6 Map Information and Outdoor Navigation

So far in this section, the planning applications have assumed little or no a priori map information. Map information
is useful because it can guide the robot around obstacles or clear of impasses long before they appear in its sensor's
field of view. Even incomplete or approximate information is often more beneficial than no map information. In gen-
eral, the better the presumed map information approximates the actual world (i e. s(0) - a(0)), the lower the cost of the
trajectory driven by the robot. A priori data, or map information, can assume a number of forms. Three possibilities
are listed below:

- Dense Resolution: each cell is assigned an s(°) value corresponding to a separate measurement from a dense
set. An example of this type of map is a surveyed room or field. The resolution of the map data is commensurate
with the survey data.
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* Comase Resolution: each cell is assigned the s(°) value of a sparse measurement taken near the cell or an inter-
polated value between measurements. An example of this type of map is 100-meter elevation data recorded aeri-
ally that is interpolated to fill a 1-meter resolution map.
* Feature Data: cells corresponding to large or significant features in the world (e.g., hills, lakes, buildings,
roads) -- ' labelled appropriately, and the rest of the cells are presumed to be EMPTY.

Maps for outdoor navigation typically record cost informatiun for difficulty of traverse. For example, steep hills have
0 high s(°) values since extra fuel must be expended to propel the robot. Likewise, pothole-ridden terrain has high s(C)

values since a bumpy ride is undesirable. Extremely steep tewain and stumps, boulders, and other large objects have
prohibitively high s(°) values, since these terrain features are essentially obstacles and cannot be traversed at any
cost. Paved roads have low s(°) values and are preferred. D* is capable of representing terrain costs since s(O), and
therefore c(°), can represent a continuum of values.

Figure 16 shows path planning across fractally-generated natural terrain using a complete, dense map of the terrain.
The environment is 450 x 450 cells, and the robot's field of view is 20 cells. The start state is the lower left comer,
and the goal state is the upper right comer. Black regions are obstacles and cannot be traversed at any cost. The grey
scales represent a continuum of cost values such that dark grey regions are five times more difficult to traverse than
white regions. Since the map is complete, a(*) - s(°), and the complete and final path can be planned to the goal
before the robot begins its traverse. The cost of the path is 40,426. This path is referred to as omniscient optimal,
since it is the lowest-cost path given complete and accurate a priori map information.
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FIgum 16: Path Planning across Natural Terrain with a Complete Map

Figure 17 il,-istrates path planning in the same terrain with no a priori map information. In this case, the optimistic
assumptiois is made that the environment consists only of the lowest-cost (white) cells. Initially, the robot heads
directly for the goal and optimizes its path "locally" within its field of view. Unfortunately, given the lack of a priori
information the robot chooses to go to the right of the large black obstacle region upon its first encounter and finds
itself moving around the long side looking for an opening in the direction of the goal. After wandering into a dead
end, the robot backtracks around the last obstacle and finds the goal. The cost of the traversed path is 107,608: over
twice that of the omniscient optimal path. Even though the path is of higher cost than omniscient optimal, it is still
optimal given the information the robot had when it acquired it.
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Figure 17: Path Planning Across Natural Terrain without a Map

These two examples illustrate opposite ends of a continuous spectrum, and for most applications they are unrealistic.
In general, some a priori map information is available. Figure 18 illustrates planning over the same terrain with coarse
map information, perhaps measured from a satellite or aircraft. In this example, the coarse map was created by
averaging the a(*) values in each coarse cell (i.e., square region) and writing the average into s(0) for each dense cell
in the region. Each coarse cell is 56 x 56 dense cells. Therefore, s(X) * a(X) for most X, but for the most part, s(°) is an
approximation to a(°). The map information is accurate enough to properly guide the robot around the large
obstructions, and the resultant path is "globally" similar to that in Figure 16 barring some "local" variations. The cost
of the path in Figure 18 is 42,882. Thus, it overshoots the omniscient-optimal path by 6% in cost. Figure 19 is similar
to Figure 18 except that a higher-resolution map is used (i.e., coarse cells = 7 x 7 dense cells). The cost of this path is
41,079, and it overshoots the omniscient-optimal path by 1.6%. From this set of examples, it can be concluded that
the more accurate the prior map data, the lower the cost of the traverse.
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Figre 1i Path Planning with a Coame-Resolution Map
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rq1n 19: Path Planning with a Medium-Reouion Map

4.7 Multple Goal States
In the description of D* in Section 2.0, it is assumed that only one state has an h(°) value of zero (i.e., there is only
one goal state). D* permits more than one goal state. Tiis feature has several uses. For example, any part of a desig-
nated area on the floor may suffice as a goal; thus, all cells in the area are equivalent goals. Furthermore, two widely-
separated doors leading out of a room may be considered equivalent goals.

It may even become important to introduce new goal states while the robot is moving through the environment For
example, the robot may be heading for the one, known door in a room when it detects a second door with its sensor.
In this case, the new goal state X with h(X) = 0 is entered on the OPEN list and PROCESS- STATE is called
repeatedly until kjr equals or exceeds hQ'), where Y is the robot's current state.
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Figure 20 illustrates the use of two goal states in path planning. The a priori map contains only EMPTY cells, and
therefore the robot does not know about the T-shaped obstacle. Initially, both goal states, G, and G2 , are entered on
the OPEN list with h(GI) = h(G2) = 0. The routine PROCESS- STATE is called repeatedly until the robot's start
state has an optimal path. Note that initially the robot moves toward Gi since G1 is closer, and it presumes the
straight-line path is unobstructed. When the robot detects the obstacle, it attempts to move around it to the top and
then doubles back down and to the right. Eventually it works itself into a position where G 2 is closer than G, and
proceeds to move to G2 instead. The robot's field of view in this example is 10 cells.

Figure 20: Path Planning with Two Goal States
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4.8 Muftiple Robots

In some applications, two or more robots operate in an environment [15][21]. For example, consider two robot scouts
returning to a home base across largely unknown terrain after performing a reconnaissance mission. Both robots are
equipped with sensors to measure terrain properties. Assuming the robots cannot interfere with each other, a simple
way of implementing this mission is to equip both robots with a priori maps and instruct them to move independently
toward the goal. It is clear from previous sections how to implement this mission with D*. With this arrangement,
however, neither robot benefits from the sensor readings of the other robot. If the two robots share a map, then obsta-
cles detected by one robot are available to the other.

Consider the example in Figure 21. Robots R1 and R2 are equipped with a one-cell FOV. They move toward the goal
state G using a map of the environment containing the grey obstacle. Because they are unaware of the black obstacle,
both robots plan to move over the top of the grey obstacle and down to the goal. R, is ahead of R2 . As both robots
move forward, R1 discovers that the black obstacle obstructs its path. This information is effectively communicated
to R2 via the shared map, and R2 chooses an alternate route and changes course long before it reaches the impasse. In
order to use D* in a shared arrangement, whenever a discrepancy is discovered between the presumed world and the
actual world (i.e.,s(X) * a(X) for some state X) by either robot's sensor, the changes are entered onto the OPEN fist
via MODIFY- COST, and PROCESS-STATE is called repeatedly until km.. exceeds the h(°) values of both robots.
Each robot is free to move (optimally) when its own h(°) value equals or is exceeded by k,,,n. D* is most efficient
when the two robots are located on cells with approximately the same h(°) value.
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F]iure 21: Path Planning with Two Robots

RI

R2
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5.0 Expedmental Results

D* was compaed to the optimal replanner to verify its optimality and to determine its performance improvement.
The optimal replanner initially plans a single path from the goal to the start state. The robot proceeds to follow the
path until its sensor detects an error in the map (i.e., s(X) * a(X) for some X). The robot updates the map, plans a new
path from the goal to its current location, and repeats until the goal is reachedL An optimistic heuristic function *(X) is
used to focus the search, such that §(A) equals the "straight-line" cost of the path from X to the robot's location
assuming all cells in between are EMPTY. The replanner repeatedly expands states on the OPEN list with the mini-
mum J(X) + h(X) value. Since *(X) is a lower bound on the actual cost from X to the robot for all X, the replanner is
optimal [141.

"7Te two algorithms were compared on planning problems of varying size. Each environment was square, consisting
of a start state in the center of the left wall and a goal state in center of the right wall. Each environment consisted of
a mix of map obstacles (i.e., available to robot before traverse) and unknown obstacles measurable by the robot's
sensor. The sensor used was omnidirectional with a 10-cell field of view. Figure 22 shows an environment model with
100,000 states. The map obstacles are shown in grey and the unknown obstacles in black.

Figure 22: Typical Environment for Path Planning Comparison

Table I shows the results of the comparison for environments of size 1000 through 1,000,000 cells. The runtimes in
CPU time for a Sun Microsystems SPARC-10 processor are listed along with the speed-up factor of D* over the
optimal replanner. For each environment size, the two algorithms were compared on five randomly-generated
environments, and the runtimes were averaged. The speed-up factors for each environment size were computed by
averagig the speed-up factors for the five trias.
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The runtime for each algorithm is highly dependent on the complexity of the environment, including the number,
size, and placement of the obstacles, and the ratio of map to unknown obstacles. The results indicate that as the
environment increases in size, the performance of D* over the optimal replanner increases rapidly. The intuition for
this result is that D* replans locally when it detects an unknown obstacle, but the optimal replanner generates a new
global trajectory. As the environment increases in size, the local trajectories remain constant in complexity, but the
global trajectories increase in complexity.

Note that even for large environments (e.g., 1,000,000 cells), D* is a real-time algorithm. If the environment consists
of square-meter resolution cells, then a 1,000,000-cell environment is a square kilometer. If a robot drives the width
of the square-shaped terrain using the optimal replanner, its average speed will be limited to 1.2 km/hr at best. If D*
is used, the speed will be limited by the robot itself. This is important since any planner for unknown and dynamic
environments must necessarily operate in lock-step with a moving and sensing robot.

Table 1: Comparison of D* to Optimal Replanner

Algorithm 1,000 10,000 100,000 1,000,000

Replanner 427 msec 14.45 sec 10.86 min 50.82 min

D* 261 msec 1.69 sec 10.93 sec 16.83 sec

Speed-Up 1.67 10.14 56.30 229.30
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6.0 Conclusions

6.1 Sumnamy
This paper presents D*, a provably optimal and efficient path planning algorithm for sensor-equipped robots. The
algorithm can handle the full spectrum of a priori map information, ranging from complete and accurate map infor-
mation to the absence of map information. A number of applications are illustrated, including planning with robot
shape, field of view considerations, dead-reckoning error, changing environments, occupancy maps, potential fields,
natural terrain, multiple goals, and multiple robots.

D* is a very general algorithm and can be applied to problems in artificial intelligence other than robot motion
planning. In its most general form, D* can handle any path cost optimization problem where the cost parameters
change during the search for the solution. D* is most efficient when these changes are detected near the current
starting point in the search space, which is the case with a robot equipped with an on-board sc rsor.

6.2 Future Work

For unknown or partially known terrains, recent research literature has addressed the exploration and map building
problems [12][1611171118][221 in addition to the path finding problem. Using a strategy of raising costs for previously
visited states, D* can be extended to support exploration or acquisition tasks.

Quad trees have limited use in environments with cost values ranging over a continuum, unless the environment
includes large regions with constant traversability costs. Future work will incorporate the quad tree representation for
these environments as well as those with binary cost values (e.g., OBSTACLE and EMPTY) in order to reduce
memory requirements [22].

Although D* has been shown to be efficient, there is room for improvement. Presently, the effects of a cost change are
propagated out from the modified arc in all directions. It may be possible to bias this propagation in the direction of
the robot by using a heuristic function similar to that employed in A* [14], thus resulting in a new optimal path to the
robot's state with fewer state expansions. A function §(0) must be selected that provides a lower bound on the true
cost g(°) from the modified arc to the robot's state to preserve optimality. There are two complications. First, the
robot is in motion, so g(°) must be recomputed for each state on the OPEN list. Second, using h(°) + k(0) instead of
h(0) will require a new definition for k°) that preserves completeness and optimality.
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